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Abstract

This article is concerned with effect of spatial and temporal discretizations on traveling wave solutions to parabolic

PDEs (Nagumo type) possessing piecewise linear bistable nonlinearities. Solution behavior is compared in terms of

waveforms and in terms of the so-called ða; cÞ relationship where a is a parameter controlling the bistable nonlinearity

by varying the potential energy difference of the two phases and c is the wave speed of the traveling wave. Uniform

spatial discretizations and AðaÞ stable linear multistep methods in time are considered. Results obtained show that

although the traveling wave solutions to parabolic PDEs are stationary for only one value of the parameter a; a0, spatial
discretization of these PDEs produce traveling waves which are stationary for a nontrivial interval of a values which

include a0, i.e., failure of the solution to propagate in the presence of a driving force. This is true no matter how wide the

interface is with respect to the discretization. For temporal discretizations at large wave speeds the set of parameter a

values for which there are traveling wave solutions is constrained. An analysis of a complete discretization points out

the potential for nonuniqueness in the ða; cÞ relationship.
� 2003 Published by Elsevier Science B.V.
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1. Introduction

Reaction–diffusion, Ginzburg–Landau, Allen–Cahn equations, or more generally time-dependent partial

differential equations (PDEs) that contain a reaction, or driving term, along with a spatial dispersion term,

are fundamental tools for the modeling of many physical systems. The simplest solutions to these equations

are constant solutions at the equilibrium values of the reaction term. If the nonlinearity possesses at least

two equilibrium points one can consider solutions that ‘‘connect’’ different equilibrium points. These
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heteroclinic connections may correspond to traveling wave solutions which are often very stable solutions

of the PDE. In particular, for the case of bistable nonlinearities, traveling wave solutions connecting the

two ‘‘stable’’ equilibria attract a large class of initial conditions (see [2,13]).

Our contribution in this paper is to consider the effect of discretization (both spatial and temporal) on

the behavior of traveling wave solutions to bistable PDEs with piecewise linear nonlinearities. We find that

the effect of spatial discretization is most evident for wave speed c � 0, while for temporal discretization

changes are most evident for large wave speeds. Our results may serve to benchmark the effect of such

discretization and may be useful in understanding the impact of truncation from the infinite spatial do-
mains considered here to finite domains with various boundary conditions. When approximating solutions

to partial differential equations in a neighborhood of traveling wave solutions, we consider finite differences

in space and stiffly stable methods in time. Our approach is to consider the resulting differential-difference

equations (for a semi-discretization) or the resulting difference equations (for a complete discretization),

apply a traveling wave ansatz, and then analyze the resulting traveling wave equations. The traveling wave

equations of the discretized equations exhibit fundamentally different solution characteristics and wave

speed properties compared to the traveling wave equations of the PDE. Included are phenomena such as

the shape of the solution profile being step-like instead of tanh-like (corresponding to lurching in the
motion of the interface) (occurring in both the time and space discretizations), failure of the interface to

propagate (space discretization), anisotropy in the speed of interface dependent on the spatial discretiza-

tion, and speed up of the wave (time discretization). An example from materials science where these

characteristics affect the robustness of numerical studies is phase-field modeling [31] of phase transitions,

where the continuous transition between any two phases (the interface) is a thin layer with thickness of

order less than or equal to the underlying mesh used in the numerics [3,30]. Interface speed up, pinning, and

anisotropic interface movement all occur when using finite difference methods to study the time evolution of

phase field models. This paper points out that care needs to be taken to be sure that these effects are
minimal in such numerical phase field studies.

There has been much work on the existence and stability of monotone traveling wave solutions of bi-

stable reaction–diffusion PDEs, notably the work of Fife and McLeod [13] and Aronson and Weinberger

[2]. In addition, work on traveling wave solutions of spatially discrete bistable equations has been motivated

by the importance of these types of equations as models in their own right (see for example [5,9,17–

19,34,35]). Recently, there has been interest in equations of the form of mixed-type delay equations char-

acterized by having both backward and forward delays (see the work of Mallet-Paret [20,21]) that occur

when considering the traveling wave equations for such spatially discrete systems. Notable work related to
time discretization includes that of Weinberger [33,34] and that of Chow et al. [4] that considers (up to

rescaling) a uniform in space, forward Euler in time complete discretization. In this paper we consider more

appropriate time-stepping techniques, AðaÞ stable linear multistep methods. The time-stepping techniques

we consider here are the so-called regular methods (see, e.g., [27]) that do not add or subtract equilibrium

solutions, hence we will not expect to see pinning or propagation failure due to time discretization.

We consider the Nagumo PDE [23]

ut ¼ �2Du� f ðuÞ; ð1Þ
where u � uðx; tÞ, x 2 Rn for n ¼ 1; 2; or 3, D is the standard Laplacian operator, tP 0 and f is a bistable

piecewise linear nonlinearity (see [12,22,26,28,29])

f ðuÞ �
u; u < a;
u� 1; u > a;
½a� 1; a	; u ¼ a;

8<
: ð2Þ

where 0 < a < 1 is a so-called detuning parameter. Results for smooth nonlinearities such as uðu� 1Þðu� aÞ
can be found in [11]. A traveling wave solution is a pair ðu; cÞ satisfying uðx 
 r � ctÞ ¼ uðx; tÞ, where r 2 Rn
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satisfies jjrjj2 ¼ 1 and specifies the direction in which the plane wave is propagating. The function u de-

termines the profile of the wave and c determines the wave speed. The so-called traveling wave equation that

must be satisfied for (1) is

�c _uuðnÞ ¼ �2 €uuðnÞ � f ðuðnÞÞ; n � x 
 r � ct 2 R; ð3Þ

together with the boundary conditions uð�1Þ ¼ 0 and uðþ1Þ ¼ 1. Observe that the traveling wave

equation (3) is independent of the dimension n, is independent of the direction of propagation r, and is

unique only up to translation.

Using the techniques in [6,8], one can show that for (3) with the nonlinearity (2), u is the C1 function

uðnÞ ¼ 1

2
þ 1

p

Z 1

0

AðsÞ sinðsnÞds
sðA2ðsÞ þ c2s2Þ þ

c
p

Z 1

0

cosðsnÞds
A2ðsÞ þ c2s2

¼ HðnÞ þ C�e
k�n; n 2 R; ð4Þ

where AðsÞ ¼ 1þ �2s2;HðnÞ is the Heaviside step function,

C� ¼
1
2
þ c

2
ffiffiffiffiffiffiffiffiffiffi
4�2þc2

p ; n6 0;

� 1
2
þ c

2
ffiffiffiffiffiffiffiffiffiffi
4�2þc2

p ; n P 0;

8<
: and k� ¼

�cþ
ffiffiffiffiffiffiffiffiffiffi
4�2þc2

p
2�2

; n6 0;

�c�
ffiffiffiffiffiffiffiffiffiffi
4�2þc2

p
2�2

; nP 0;

8<
:

and the relationship between the wave speed c and the detuning parameter a is given by

a ¼ 1

2
þ c

p

Z 1

0

ds
A2ðsÞ þ c2s2

¼ 1

2
þ c

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
4�2 þ c2

p ; ð5Þ

where because u is monotone we have chosen the unique translate such that uð0Þ ¼ a. We remark here that
the piecewise linear nonlinearity is a prototype of a smooth nonlinearity with the property that

lima!1 cðaÞ ¼ þ1; as opposed to the cubic nonlinearities uðu � aÞðu � 1Þ or uðu2 � 1Þ þ F ðu; aÞ, which
are often considered, where lima!1 cðaÞ ¼ ½c�;þ1Þ for some finite value c�. The piecewise linear nonlin-
earity has the added advantage that it facilitates the use of transform techniques so we are able to obtain a

good deal of information about the solution behavior of both the PDE system and the discretized systems.

The outline of this paper is as follows. In Section 2 we consider uniform rectangular spatial discretizations

and point out changes in solution behavior due to anisotropy in the difference approximation to the La-

placian and the inability of the difference operator to resolve steep fronts resulting in pinning or failure of the
wave to propagate. We consider temporal discretization with AðaÞ stable linear multistep methods in Section
3 and focus on BDF methods which are the methods of choice in codes such as DASSL [24,25] and LSODE

[16] for the solution of stiff differential equations. Initially we present the form of the traveling wave equa-

tions which are retarded differential-difference equations (see [15]), and subsequently state theorems proving

the existence of monotone traveling wave solutions for the Backward Euler temporal discretization with

piecewise linear bistable reaction term. We exhibit explicit forms for the traveling wave solutions with the

piecewise linear reaction term and for the Backward Euler discretization find the error to first approximation

in the wave form and the ða; cÞ curve in Section 4. In Section 5 we consider the error in the ða; cÞ curves in the
limits as jcj ! 1 for temporal discretizations and as c ! 0 for spatial discretizations. We find that char-

acteristics of the limiting behaviors in the ða; cÞ curves for semidiscretizations occur for all c for the complete
discretization, in fact the ða; cÞ are set valued for a dense set of values of c. Section 6 contains our conclusions.

2. Spatial discretization and traveling waves

We now consider the spatial discretization of (1) with mesh widths of Dxi; i ¼ 1; . . . ; n; in the coordinate
directions, thus obtaining a spatially discrete equation of the form

564 C.E. Elmer, E.S. Van Vleck / Journal of Computational Physics 185 (2003) 562–582



dUjðtÞ
dt

¼ �2LUjðtÞ � f ðUjðtÞÞ;

LUjðtÞ ¼
Xn
i¼1

1

Dx2i
½UjþeiðtÞ

�
þ Uj�eiðtÞ � 2UjðtÞ	

�
;

ð6Þ

with UjðtÞ � uðjDx; tÞ with jDx ¼ ½j1Dx1; . . . ; jnDxn	, where j 2 Zn and ei is the ith unit vector. For (6) the

traveling wave equations are ðuðjDx 
 r � ctÞ ¼ UjðtÞÞ

�c _uuðnÞ ¼ �2LTuðnÞ � f ðuðnÞÞ; n � jDx 
 r � ct 2 R; ð7Þ

LTuðnÞ ¼
Xn
i¼1

1

Dx2i
½uðn

�
þ DxiriÞ þ uðn � DxiriÞ � 2uðnÞ	

�

together with the boundary conditions uð�1Þ ¼ 0 and uðþ1Þ ¼ 1.

Formulas for the waveform and detuning parameter for (7) with f, (2), are found by replacing AðsÞ
with

~AAðsÞ ¼ ~AAðx; fDxign
i¼1Þ :¼ 1þ 2

Xn
i¼1

�2

Dx2i
ð1� cosðsDxiriÞÞ ð8Þ

in (4) and (5), respectively. The transform techniques used to find these solutions are justified by the
arguments in [6]. We mention here that as opposed to the traveling wave equations for the PDE (3) the

traveling wave equations for the spatial discretization (7) depend on the spatial dimension n and di-

rection of propagation r. This is simply due to the fact that the Laplacian is isotropic (direction in-

dependent) while the finite difference operator is anisotropic [6–8]. In addition, as will demonstrated

in Section 5, a major difference [17,18,21,35] between the behavior of traveling wave solutions for

PDE and the spatial discretization is the existence of a range of a about 1/2 for which the wave speed

c ¼ 0.

We consider rectangular spatial meshes because they are the first step in analyzing the existence and
behavior of traveling wave solutions of Nagumo PDEs under discretization and because such spatially

discrete systems have been proposed as models of biological and physical systems. In general, for static

nonuniform spatial discretizations we do not expect to have monotone traveling wave solutions due to the

requirement of translation invariance. A study of nonuniform discretizations that move with the traveling

wave would be interesting, but is beyond the scope of this work.

3. Linear multistep methods and traveling wave solutions

Next we consider time discretization schemes for the PDE (1), apply an appropriate traveling wave

ansatz, and then analyze the resulting traveling wave equations. Consider the application of a consistent

linear multistep method (see [14]) to the differential equation _uu ¼ gðuÞ. The resulting difference equation has
the form

Pk
j¼0 ajUnþj ¼ Dt

Pk
j¼0 bjgðUnþjÞ, where Unþj � uðtnþjÞ and Dt is the temporal step size. In par-

ticular, for (1) we obtain

Xk
j¼0

ajUnþjðxÞ ¼ Dt
Xk
j¼0

bj½�2DUnþjðxÞ � f ðUnþjðxÞÞ	: ð9Þ

C.E. Elmer, E.S. Van Vleck / Journal of Computational Physics 185 (2003) 562–582 565



The traveling wave ansatz becomes Wðx 
 r � ctkÞ ¼ UkðxÞ which upon substitution into (9) yields the

traveling wave equations

Xk
j¼0

ajWðn � jcDtÞ ¼ Dt
Xk

j¼0
bj �2 €WWðn
h

� jcDtÞ � f ðWðn � jcDtÞÞ
i
; n ¼ x 
 r � ct0 2 R: ð10Þ

3.1. Temporal discretization: linear multistep methods

Our interest is in monotone solutions W which for the nonlinearity (2) allows for a simplification to a

linear inhomogeneous equation. If W is monotone and we choose the translate such that Wð0Þ ¼ a, then for
the piecewise linear f as in (2), f ðWðnÞÞ ¼ WðnÞ � HðWðnÞ � aÞ ¼ WðnÞ � HðnÞ, where H is the Heaviside

function. In this case (10) becomes

Xk
j¼0

ajWðn � jcDtÞ ¼ Dt
Xk

j¼0
bj½�2 €WWðn � jcDtÞ � Wðn � jcDtÞ þ Hðn � jcDtÞ	: ð11Þ

Due to stiffness considerations we focus on AðaÞ stable linear multistep methods, in particular, on stable

BDF methods (see [14]). Much of our analysis with the piecewise linear f in (2) will depend on the

smoothness of the solution W and in general we do not expect that the second derivative will be continuous
but it may be regarded as set valued at a finite number of points. Because bk 6¼ 0 while bj ¼ 0 for

j ¼ 0; . . . ; k � 1 for the BDF methods

€WWð0þÞ � €WWð0�Þ ¼ 1

�2
: ð12Þ

In the following theorem, whose proof is found in [10], monotonicity of the wave form is assumed for the

piecewise linear f.

Theorem 1. Consider the application of a linear multistep method to (1) with f given by (2). For Dt > 0, ifPk
j¼0 aj ¼ 0 and

Xk
j¼0

expð�ijcDtsÞðaj=Dt þ bjAðsÞÞ 6¼ 0; AðsÞ ¼ �2s2 þ 1; ð13Þ

in the horizontal strip �d6 Im s6 0 for small d > 0, then there exists a solution W to (10) satisfying
Wð�1Þ ¼ 0 and Wðþ1Þ ¼ 1 of the form

WðnÞ ¼ 1

2
þ 1

p

Z 1

0

Dðs;Dt; nÞds
sEðs;DtÞ ; ð14Þ

where

Dðs;Dt; nÞ ¼
Xk
l¼1

Xk�l

j¼0
½bjcjþl sinðsn

(
þ lcDtsÞ þ cjbjþl sinðsn � lcDtsÞ	 þ

Xk

j¼0
bjcj sinðsnÞ

)
; ð15Þ

Eðs;DtÞ ¼
Xk
l¼1

Xk�l

j¼0
½2cjcjþl cosðlcDtsÞ	 þ

Xk
j¼0

c2j ; ð16Þ

where d ¼ cDt, and cj ¼ aj=Dt þ bjð�2s2 þ 1Þ ¼ aj=Dt þ bjAðsÞ.
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Remark 3.1. In [10] it is shown that for the Backward Euler discretization the condition (13) in Theorem 1

is satisfied. For higher-order BDF methods we were not able to justify the monotonicity assumption due to

the lack of smoothness observed in Eqs. (12). It is also possible to show (see [10]) that for the Backward

Euler discretization of (1) for c 6¼ 0, the curve cðaÞ is strictly monotone.

3.2. Complete discretization – Backward Euler and rectangular spatial mesh

If we consider a Backward Euler discretization in time and standard second-order finite differences for

the spatial discretization, then the traveling wave equation for the complete discretization is

�WðnÞ þ Wðn � cDtÞ ¼ Dt½�2LTWðn � cDtÞ � f ðWðn � cDtÞÞ	; ð17Þ

where LT is given in (7). In this case the formula for the waveform and the ða; cÞ relationship may be

obtained from (14) and (18), respectively, by replacing cj with ~ccj ¼ aj=Dt þ bj
~AAðsÞ for j ¼ 0; 1 in (15), (16),

and (18), where ~AAðsÞ is as defined in (8). The justification of the monotonicity assumption follows from the
results in [6] and the results on the Backward Euler method in this section.

4. Leading order error analysis

For the piecewise linear reaction term f we obtain a relationship between the wavespeed c and the de-

tuning parameter a by setting n ¼ 0 for monotone waves assuming uð0Þ ¼ Wð0Þ ¼ a.

4.1. Error analysis – linear multistep methods

For the consistent linear multistep methods

a ¼ Wð0Þ ¼ 1

2
þ 1

p

Z 1

0

~DDðs;DtÞds
sEðs;DtÞ ; ~DDðs;DtÞ ¼

Xk

l¼1

Xk�l

j¼0
ðbjcjþl � cjbjþlÞ sinðlcDtsÞ: ð18Þ

Using the formulas obtained for the PDE (4) and (5) and for the linear multistep discretizations (14) and (18)
we determine expressions for the error in the waveform and the difference in a as functions of �, Dt, and c.

To determine the error in a for fixed values of �; Dt, and c consider

Erra ¼ juð0Þ � Wð0Þj ¼ 1

p

Z p

0

c
A2ðsÞ þ c2s2

����� �
~DDðs;DtÞ
sEðs;DtÞ ds

����� ¼ ~CC1Dt
��� þ ~CC2Dt2 þ 
 
 


���; ð19Þ

where

~CCðs;DtÞ �
~DDðs;DtÞ
sEðs;DtÞ and ~CCn ¼

1

n!
1

p

Z 1

0

on~CCðs; 0Þ
oDtn

ds;

for n ¼ 1; 2; 3; . . . Similarly, for the error in the waveform at arbitrary n 2 R consider

ErruðnÞ ¼ C1Dt
�� þ C2Dt2 þ 
 
 


��; ð20Þ

where

Cðs;Dt; nÞ � Dðs;Dt; nÞ
sEðs;DtÞ and Cn � CnðnÞ ¼

1

n!
1

p

Z 1

0

onCðs; 0; nÞ
oDtn

ds;

for n ¼ 1; 2; 3; . . . By a direct calculation we obtain the following theorem.
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Theorem 2. For a consistent linear multistep method the coefficient C1ðnÞ is given by

C1ðnÞ ¼ � 1

3p
Kða; bÞ 1

�8
c2 Is20ðnÞ
��

þ 2�2Is21ðnÞ þ �4Is22ðnÞ
�
þ c3 Ic21ðnÞ

�
þ �2Ic22ðnÞ

��
ð21Þ

and

~CC1 ¼ C1ð0Þ ¼ � 1

3p
Kða; bÞ c

3

�8
½I21 þ �2I22	; ð22Þ

where the integrals Iij; IcijðnÞ; IsijðnÞ are tabulated in Appendix A and

Kða; bÞ ¼ � 1

3

Xk
j¼0

bj

" #2, Xk
j¼0

Xk

l¼0
ðj

"
� lÞ2blaj

#
:

As a corollary to Theorem 2 we have the following for the Backward Euler method.

Corollary 4.1. For the Backward Euler method Kða; bÞ ¼ 3, and

C1ðnÞ ¼ � c

4ðc2 þ 4�2Þ3=2
c2ðe�

ffiffiffiffiffiffi�a2
p jnj

�
þ e�

ffiffiffiffiffiffi�a1
p jnjÞ þ 4�2ðe�

ffiffiffiffiffiffi�a2
p jnj � e�

ffiffiffiffiffiffi�a1
p jnjÞ þ cþ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4�2

p

2�2
e�
ffiffiffiffiffiffi�a1

p jnj
�

þ c�
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4�2

p

2�2
e�
ffiffiffiffiffiffi�a2

p jnj þ ffiffiffiffiffiffiffiffi�a1
p

e�
ffiffiffiffiffiffi�a2

p jnj þ ffiffiffiffiffiffiffiffi�a2
p

e�
ffiffiffiffiffiffi�a1

p jnj
� ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

c2 þ 4�2
p

2
n

�
;

where

a1 ¼
�ðc2 þ 2�2Þ þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4�2

p

2�4
and a2 ¼

�ðc2 þ 2�2Þ � c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4�2

p

2�4
;

and

~CC1 ¼ C1ð0Þ ¼ � c3

2ðc2 þ 4�2Þ3=2
:

4.2. Error analysis – rectangular spatial discretization

To determine the manner in which the error in the relationship between the detuning parameter a and

the wavespeed c depends on the mesh widths fDxign
i¼1 under a spatial semidiscretization we expand in a

Taylor series in Dx. We find that the leading order terms are Dx2i terms and if we let ĈCi denote the coefficient

multiplying Dx2i we have

ĈCi ¼ � 1

p

Z 1

0

ðo2 ~AA=oDx2i Þðs; 0Þ sinðsnÞ
sðA2ðsÞ þ c2s2Þ dsþ 2

p

Z 1

0

A2ðsÞðo2 ~AA=oDx2i Þðs; 0Þ sinðsnÞ
sðA2ðsÞ þ c2s2Þ2

ds

þ 2c
p

Z p

0

AðsÞðo2 ~AA=oDx2i Þðs; 0Þ cosðsnÞ
ðA2ðsÞ þ c2s2Þ2

ds

¼ � c
3�6p

I22
�

þ �2I23
�
; ð23Þ
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where the values of I22; I23 are tabulated in Appendix A. After some calculation we find that the leading

order terms for the error in a, Erra, are of the form

Erra ¼ � cðc2 þ 6�2Þ
24�2ðc2 þ 4�2Þ3=2

Xn
i¼1

r4
i Dx2i

" #
þ 
 
 
 : ð24Þ

Hence given a direction of propagation r the choice of spatial discretization with r4
i Dx2i ¼ const for

i ¼ 1; . . . ; n gives, to leading order, equal contributions to the error in a.

4.3. Error analysis – complete discretization

If we combine the error analysis for the Backward Euler temporal discretization and the spatial dis-

cretization we find that to leading order the error in a has the form

Erra ¼ � c

2ðc2 þ 4�2Þ3=2
c2Dt

"
þ ðc2 þ 6�2Þ

12�2

Xn
i¼1

r4
i Dx2i

#
þ 
 
 
 : ð25Þ

This provides, to leading order, ratios of the time-step Dt and the spatial mesh that for a given wave speed c

and diffusion coefficient �2 equally distribute the error in a between the temporal discretization and the

temporal discretization.

5. The behavior of a as |c| approaches 0 or ‘

When solving the traveling wave equations (3) and (7) and their approximations (10) and (17) for a given

c we also find the value of the detuning parameter a. The functions aðcÞ for (3) are monotone and

have range ð0; 1Þ for nonlinearity (2). With the boundary conditions uð�1Þ ¼ Wð�1Þ ¼ 0 and

uðþ1Þ ¼ Wðþ1Þ ¼ 1 we now examine the aðcÞ curves for each of our discretized examples and in par-

ticular we examine the error in a, Erra, with particular attention to the cases jcj ! 1 and jcj ! 0, when

using these various approximation methods. As jcj ! 1, the second derivative and second-order difference
terms, the terms that come from the diffusion operator, will go to zero. Thus any error in a, or the solution

curve, comes from the temporal discretization. As jcj ! 0, the first derivative and the first-order difference

terms, the terms that come from the time derivative, will go to zero. Thus any error in a, or the solution

curve, comes from the spatial discretization.

5.1. The numerical method

In the following sections we include plots of the solution profiles and the aðcÞ relations. All four of of our
traveling wave equations (3), (10), (7), and (17), with f (2), can be written as

Gð�vv; aÞ ¼ 0; ð26Þ

where �vv ¼ fvðxÞ; . . . ; vðx� kcDtÞ; vðxþ Dx1r1Þ; . . . ; vðxþ Dx1r1 � kcDtÞ; . . . ; vðx� Dxnrn � kcDtÞg with

boundary conditions vð�1Þ ¼ 0, vð1Þ ¼ 1. For all but (17), Eq. (26) is a two-point boundary value

problem on an infinite interval that is transitionally invariant. For any numerical representation of (26)
there exists a continuous nonlinearity f which has exactly the same values of (2) everywhere the nonlin-

earity is evaluated. Hence we can treat (26) as nonlinear and consider its linearization. Since we are solving

for both v and a we consider the variation of (26) with respect to v and a which is

G�vvð�vv; aÞ�wwþ Gað�vv; aÞb ¼ 0;
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which has the isolated solution w ¼ d _vv and b ¼ _aa ¼ 0 for any d 2 R. Thus, we add to (26) the condition
_aa ¼ 0. When solving (17), we add a e _vv term and take e ! 0�. We used an experimental collocation based

boundary value problem solver for functional differential equations of mixed type [1] using appropriate

boundary functions defined in terms of eigenfunctions of the linearization about 0 and 1 to truncate the

infinite interval. Results where obtained by computing in double precision, compiled with True64 Fortran,

and run on a Compaq/DEC Alpha chip.

5.2. Spatial discretization of Eq. (3)

To determine Erra we consider the ða; cÞ relationship for (3) and for (7). In the infinite wavespeed limit

the spatial derivatives and differences no longer effect the solution profile or the value of a. In the zero wave

speed limit however, behavior of the solution profile or the value of a are fundamentally different,
exhibiting propagation failure and step-like profiles, phenomena not present in the PDE.

5.2.1. Spatial discretization in the jcj ! 1 limit

Theorem 3. When using (7) to approximate (3), in the limit jcj ! 1 the Erra ! 0.

Proof. Assume c > 0 and Dt > 0 and let /ðgÞ ¼ uðnÞ with g ¼ n=c. Then (3) and (7), respectively, become

� _//ðgÞ ¼ �2

c2
€//ðgÞ � f ð/ðgÞÞ; � _//ðgÞ ¼ �2L1/ðgÞ � f ð/ðgÞÞ; ð27Þ

where

L1/ðgÞ ¼
Xn
i¼1

1

Dx2i
/ g

���
þ Dxi

c
ri

�
þ / g

�
� Dxi

c
ri

�
� 2/ðgÞ

��
:

Defining /�ðgÞ � limc!1 /ðg; cÞ, for €//ðgÞ < 1,
Pn

i¼1 Dxi 6¼ 0, g 2 R, limc!1 �2=c2 ¼ 0,

limc!1 L1/ðgÞ ¼ 0, Eqs. (27) with (2) both become

_//�ðgÞ ¼ f ð/�ðgÞÞ; thus /�ðgÞ ¼
eg; g6 0;
1; g > 0;

�

a ¼ 1, Erra ¼ 0 ¼ Err/� ðgÞ, and there is a jump discontinuity in _//� at 0. Similarly, when c < 0, we can define

/�ðgÞ � limc!�1 /ðg; cÞ Eq. (27) with (2) both become

_//�ðgÞ ¼ �f ð/�ðgÞÞ; thus /�ðgÞ ¼
0; g6 0;
1� e�g; g > 0;

�

a ¼ 0 with no error in a or the solution curve and there is a jump discontinuity in _//� at 0. �

Fig. 1(a) shows the aðcÞ curves for these two cases. Observe the behavior in the tails.

5.2.2. Spatial discretization in the jcj ! 0 limit

The details and proofs of the following results for (7) with (2) were first developed in [6]. We begin with

some notation. Real numbers x1;x2 are said to be rationally independent if for j; k 2 Z, j 
 x1 þ k 
 x2 ¼ 0

if and only if j ¼ k ¼ 0. If for any j 6¼ k, and k and j ¼ 1; . . . ; n, Dxjrj and Dxkrk are rationally independent,

then we say we have a rationally independent spatial discretization, we say we have a rationally dependent

spatial discretization otherwise. Let u�ðnÞ � limc!0 uðn; cÞ.
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Theorem 4. We have the following:
(a) The limit defining u�ðnÞ exists pointwise.
(b) u�ðnÞ is defined almost everywhere on R, but can contain jump discontinuities, in fact if the spatial
discretization is rationally dependent u�ðnÞ consists of a countable discrete set of values in ½0; 1	 (the
solution consists of piecewise constant functions).

Theorem 5. We have the following:
(a) Setting uð0; cÞ ¼ a we find

u� ¼ lim
c!0�

uð0; cÞ ¼ 1

2
� lim

T!1

1

2T

Z T

0

ds
~AAðsÞ

; ð28Þ

where ~AAðsÞ is defined by (8). Thus, there is a jump discontinuity in u� at n ¼ 0 of size

lim
T!1

1

T

Z T

0

ds
~AAðsÞ

;

which is nonzero when 1=�2 is nonzero.
(b) For c ¼ 0, a can be any value in ½u�;uþ	.

Remark 5.1. Although for c ¼ 0, a is any value in ½u�;uþ	, the error in a for wave speeds near zero is

approximately

lim
T!1

1

T

Z T

0

ds
~AAðsÞ

:

Fig. 1 demonstrates behavior described by Theorem 5. In summary, for small wave speed c, spatial
discretization causes large errors in both the parameter a and the solution profile. See [6] and [8] for more

on this case.

Fig. 1. Plots of aðcÞ for the spatial discretization with piecewise linear f. Plot (a) shows that the error occurs near c ¼ 0. Plot (b) is an

enlargement of Plot (a).
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5.3. Temporal discretization of Eq. (3)

Applying linear multistep methods (in particular we will look at the BDF and theta methods) to (3) we

now examine the behavior of aðcÞ and u for jcj ! 1 and jcj ! 0. Starting with jcj ! 1 we provide an-

alytical and numerical results for linear multistep methods, the first six BDF methods and the theta method.

When jcj ! 0, the equation has no time dependence and hence no error in a or W. The overall effect of

applying these discretization methods to the traveling waves of (1) is wave speedup, i.e. the speed of the

traveling wave solution to the time discretized problem is larger than the speed of the traveling wave to the

original problem for the same potential energy. Fig. 2 illustrates wave speedup.

5.3.1. Temporal discretization in the jcj ! 1 limit

For each of the temporal discretizations presented in this section, we consider the following formulation

for large wavespeed c. Assume Dt > 0 and let /ðgÞ ¼ WðnÞ with g ¼ n=c. Then the traveling wave equations
for linear multistep methods, (10), becomes

Xk
j¼0

aj/ðg � jDtÞ ¼ Dt
Xk
j¼0

bj
�2

c2
€//ðg

�
� jDtÞ � f ð/ðg � jDtÞÞ

�
: ð29Þ

Let /�ðgÞ be defined as /ðg; cÞ ! /�
� ðgÞ as c ! �1. For €//ðgÞ < 1, g 2 R, when jcj ! 1, ð�2Dt=c2Þ ! 0

and (10) can be written as the delay equation

Xk
j¼0

ak�j/
�
� ðg þ jDtÞ ¼ �Dt

Xk
j¼0

bk�jf ð/�
� ðg þ jDtÞÞ; ð30Þ

where we have shifted the independent variable by kDt which does not effect the problem since the equation

has translational invariance for shifts of length Dt. Observe that for finite g,

/þ
� ðg þ DtÞ ¼ lim

c!1
/ðg þ DtÞ ¼ lim

c!1
Wðn þ cDtÞ ¼ 1;

Fig. 2. Plots of aðcÞ for the Backward Euler method with piecewise linear f. Plot (a) shows that the error occurs in the tails, when jcj is
large. Plot (b) is an enlargement of the tail of Plot (a). The first-order error term for Backward Euler is Dt=2.
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/�
� ðg þ DtÞ ¼ lim

c!�1
/ðg þ DtÞ ¼ lim

c!�1
Wðn þ cDtÞ ¼ 0;

and in fact /�
� ðg; aÞ ¼ 1� /þ

� ðg; 1� aÞ. Hence for this section we assume that c > 0 and let /� � /þ
� .

Lemma 5.1. Suppose ak=bk > 0. If /�ðg0Þ > a for some g0 2 R, then /�ðgÞ ¼ 1 for all g P g0.

Proof. With ak=bk > 0 we may assume ak and bk > 0. Then the right-hand side of (30) is nonnegative and

the left-hand side is nonpositive for the nonlinearity f (2). Thus by (30), /�ðg0Þ ¼ 1 and the conclusion

follows for monotone nondecreasing solutions. �

Lemma 5.2. Suppose g is such that /�ðgÞ < a and /�ðg þ dÞ > a for d P Dt. Then /�ðgÞ ¼
1� ðbkDt=ðak þ bkDtÞÞ.

Proof. By Lemma 5.1 /�ðg þ dÞ ¼ 1, the result follows directly from (30). �

Define the sequence f/lg
1
l¼�1 as

/l ¼

1; l > 0;

1� bkDt
akþbkDt ; l ¼ 0;

�
Pk

j¼1
ak�j/lþjþ

Pm

j¼1
bk�jDt/lþj

akþbkDt ; l < 0;

8>>><
>>>:

l 2 Z; r 2 ð0; 1Þ; ð31Þ

where m ¼ minðk;�lÞ.

Theorem 6. If the aj; bj; j ¼ 0; . . . ; k are such that ak=bk > 0 and such that f/lg is a monotone nondecreasing
sequence where liml!�1 /l ¼ 0; then we have the following:
(a) The magnitude of the error in a as jcj ! 1, limjcj!1 Erra is

1

2

bkDt
ak þ bkDt

¼ 1

2

bk

ak
Dt

�
� b2

k

a2k
Dt2 þ b3

k

a3k
Dt3 � 
 
 


�
¼ bk

ak

Dt
2

X1
j¼0

�
� bk

ak
Dt

�j

;

a geometric series which is convergent for Dt < ak=bk.
(b) In addition

lim
c!�1

aðcÞ ¼ 1

2
� ak

2ðak þ bkDtÞ :

Remark 5.2. Thus limjcj!1 Erra for the k-step BDF methods is first order, not kth order, in Dt.

For the Backward Euler method

lim
jcj!1

Erra ¼
1

2

Dt
1þ Dt

¼ Dt
2

X1
j¼0

ð�DtÞj and lim
jcj!�1

aðcÞ ¼ 1

2
� 1

2ð1þ DtÞ :

For the 2-step BDF method, where b0 ¼ b1 ¼ 0, b2 ¼ 2, a0 ¼ 1, a1 ¼ �4, and a2 ¼ 3,

lim
c!�1

aðcÞ ¼ 1

2
� 3

2ð3þ 2DtÞ and lim
jcj!1

Erra ¼
1

2

2Dt
3þ 2Dt

¼ Dt
3

X1
j¼0

�
� 2

3
Dt
�j

:
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The first-order error coefficients, ~CC1, such that the leading order error term is of the form ~CC1Dt in the

limjcj!1 Erra for the BDF methods of order up to 6 are

Remark 5.3. For k ¼ 1, the Backward Euler method, we see this agrees with the first-order error,

j ~CC1Dtj ¼ Dt=2 as jcj ! 1 calculated in Section 4. Fig. 2 contains a set of aðcÞ curves obtained numerical by
solving the Backward Euler equation. We see they also agree with the above results.

For the theta method, h 2 ½1=2; 1	, where k ¼ 1, and b1=a1 ¼ h,

lim
jcj!1

Erra ¼
1

2

hDt
1þ hDt

¼ hDt
2

X1
j¼0

ð�hDtÞj and a ¼ 1

2

hDt
1þ hDt

¼ 1

2
� 1

2ð1þ hDtÞ ;

the limjcj!1 Erra is also first order in Dt.

Proof. (Theorem 6) We derive the results in a detailed fashion for c ! 1, the results for c ! �1 follow the

same analysis. For linear multistep methods /�ðgÞ, (30), is defined almost everywhere on R and contains

jump discontinuities at intervals of Dt. Using the above lemmas, if we let the jumps occur when g is equal to
an integer multiple of Dt, the solution profile /� is a series of disjoint steps whose values are

/�ðgÞ ¼ /�ð½l� r	DtÞ � /l, the elements of sequence (31), with /0 chosen so that a lies above /0 and below

/1. For the Backward Euler method, the sequence /l ¼ ð1=ð1þ DtÞÞ/lþ1 for l6 0. The set of f/lg for the
case when c ! �1 happens to be a geometric distribution.

To find the value of /�ðgÞ at the jumps themselves, in particular, we want the value of a, we begin by
considering the interface of /ðgÞ for (29) with c large but finite. Assume c is large enough so that the in-

terface thickness �=c is much smaller than the step length Dt, i.e., �=c � Dt. Then the profile /ðgÞ will have a
step-like solution profile.

The set f/lg
1
l¼�1 found above (31) is a set of inflection points of the solution profile of (29). Using these

points as boundary conditions we can solve

�2Dt
c2

Xk

j¼0
bk�j

€//ðg þ jDtÞ ¼
Xk
j¼0

½ak�j þ bk�jDt	/ðg þ jDtÞ �
Xk

j¼0
bk�jDt; n 2 R;

with conditions /ð�1Þ ¼ 0 and /ð1Þ ¼ 1, by splitting the domain in subintervals of length Dt and solving
for / on each piece having conditions /ð½2l� 1	Dt=2Þ ¼ /l,

€//ð½2l� 1	Dt=2Þ ¼ 0, l 2 Z. Although the so-

lution found by this construction is not the solution to (29), it approaches it as c ! 1. We further split each
½ðl� 1ÞDt=2; ðlþ 1ÞDt=2	 interval into the two subintervals J l

left ¼ ½ðl� 1ÞDt=2; lDt	 and J l
right ¼

½lDt; ðlþ 1ÞDt=2	, and define the matching conditions so that / is continuously differentiable at each

g ¼ lDt. Solving we find that for l 2 Z,

/ðgÞ ¼ ð
P�l

i¼0 Ai1½ðg þ iÞe�k	iekg þ Bi1½ðg þ iÞek	ie�kgÞ þ /l; g 2 J l
left;

ð
P�l

i¼0 Ai2½ðg þ iÞe�k	iekgÞ þ Bi2½ðg þ iÞek	ie�kgÞ þ /lþ1; g 2 J l
right;

(

where k ¼ ðc=�Þ
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ððak þ bkDtÞ=bkDt

p
Þ. When lP 1 and thus gP Dt=2, we know /ðgÞ ¼ 1. When l ¼ 0, we

find

/ðgÞ ¼ A01e
kg þ B01e

�kg þ ak
akþbkDt ; g 2 ½�Dt=2; 0	;

A02e
kg þ B02e

�kg þ 1; g 2 ½0;Dt=2	;

�

k 1¼Backward Euler 2 3 4 5 6

~CC1 1/2 1/3 3/11 6/25 30/137 30/147
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with c ¼ kðDt=2Þ,

A02 ¼ �B01 ¼
/1 � /0

2

e�c þ e�3c

ec � e�3c
and A01 ¼ �B02 ¼

/1 � /0

2

e�c þ ec

ec � e�3c
:

We can continue to describe the solutions for each l < 0, but we stop here because we have what we need to

find a. As c ! 1, k ! 1, c ! 1, A02 ¼ �B01 ! 0 and A01 ¼ �B02 ! ðð/1 � /0Þ=2Þ ¼ 1
2
ðbkDt=

ðak þ bkDtÞÞ, thus

/�ðgÞ ¼

/0 ¼ ak
akþbkDt ; g 2 ð�Dt=2; 0Þ;

/1þ/0

2
¼ 1� 1

2

bkDt
akþbkDt ; g ¼ 0;

/1 ¼ 1; g 2 ð0;Dt=2Þ:

8>><
>>:

Since the value of /ð0Þ ¼ a, as c ! 1, a ! /�ð0Þ. A similar derivation for c ! �1 gives us

limc!�1 aðcÞ ¼ 1
2
ðbkDt=ðak þ bkDtÞÞ. �

5.3.2. Temporal discretization in the jcj ! 0 limit

In this case both (3) and (10) have solution (4) and (5) with c ¼ 0, hence no error.

5.4. Complete discretization – Backward Euler and rectangular spatial mesh

In this case we have a difference equation with no differential terms. Depending on the choice of

c;Dt;Dxi; i ¼ 1; . . . ; n, and direction r, the solution W is either a dense or discrete set of values in ½0; 1	.
Suppose all of the delays in (17) are rationally related (as defined in Section 5.2.2), then the solution will be

a discrete set of values in ½0; 1	 and the domain, D, is a discrete set of R. If any of the shifts are irrationally
related, then the domain D is dense in R. Since in both cases the solution profiles contain jump disconti-
nuities we define

WsðnÞ ¼ sWðn�Þ þ ð1� sÞWðnþÞ with s 2 ½0; 1	;

where Wðn�Þ � limx!n� WðxÞ and shift the independent variable to obtain

�Wsðn þ cDtÞ þ WsðnÞ ¼ Dt½�2LTWsðnÞ � f ðWsðnÞÞ	;

where LT is given in (7). This equation holds for all n 2 R including the values of n where there are dis-

continuities. Since typically wave profiles are thought of as maps W : R ! R this is how we will define the
following solutions and we will discuss the restriction to their domain D as an remark. The solution profiles

will form steps when jcj ! 1 and when jcj ! 0. The difference between the two cases comes from whether

the temporal or the spatial discretization dominates the behavior.

5.4.1. Complete discretization in the jcj ! 1 limit

In this case, the temporal discretization dominates.

For jcj is large we assume Dt > 0 and let /ðgÞ ¼ WsðnÞ with g ¼ n=c. Then (17) becomes

�/ðgÞ þ /ðg � DtÞ ¼ Dt½�2L1/ðg � DtÞ � f ð/ðg � DtÞÞ	; ð32Þ

where

L1/ðgÞ ¼
Xn
i¼1

1

Dx2i
/ g

���
þ Dxi

c
ri

�
þ / g

�
� Dxi

c
ri

�
� 2/ðgÞ

��
:
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Theorem 7. For Dxi; ri; i ¼ 1; . . . ; n rationally related, the error in a and the value of a are the set valued
quantities defined for s 2 ½0; 1	 as

lim
jcj!1

Erra ¼
Dt

1þ Dt
1

2

�
� ð1� 2sÞ lim

T!1

1

2T

Z T

0

1= ÂAðsÞds
�
;

and

lim
c!�1

aðcÞ ¼ /ð0; sÞ ¼ 1

2
� 1

1þ Dt
1

2

�
� Dtð1� 2sÞ lim

T!1

1

2T

Z T

0

1= ÂAðsÞds
�
;

where

ÂAðsÞ ¼ ÂAðs;Dt; fDxign
i¼1Þ :¼ 1þ 2Dt

Xn
i¼1

�2

Dx2i
ð1� cosðsDxiriÞÞ:

Remark 5.4. The function a is set valued and bounded away from 0 and 1 if and only if all Dxi ¼ 0 for some
i 2 f1; . . . ; ng.

Proof. Looking at either (17) or (32) we see that as c ! 1, the spatial shifts are infinitely smaller that the
temporal shifts. Recall from (31) that the two uppermost steps of the Backward Euler discretization in the

c ! 1 limit are

/0 ¼
Dt

1þ Dt
and /1 ¼ 1:

We want a variation (the spatially discrete operator with infinitely small shifts) of the step profile of the

Backward Euler version of (30) connecting /0 and /1. Recalling Lemma 5.1 we solve

0 ¼ 1

Dt
þ
Xn
i¼1

�2

Dx2i
/ðg½ þ DxiriÞ þ /ðg � DxiriÞ � 2/ðgÞ	 � 1

Dt

�
þ 1

�
/ðgÞ þ 1

Dt

�
þ HðgÞ

�
;

with boundary values /0 and /1. The results of the theorem now follow using the same analysis used in

Theorem 4. �

5.5. Complete discretization in the jcj ! 0 limit

In this case, the spatial discretization dominates. Using the techniques presented in [6], the upper value,

aþ, and the lower, a�, of the interval Jc are given formally by

a�ðcÞ ¼ lim
c!0�

1

2

 
þ 1

p

Z 1

0

sc þ BðsÞ
sðA2ðSÞ þ ½sc � BðsÞ	2Þ

ds

!
;

where

AðsÞ ¼ 1� 2�2
Xn
i¼1

1

Dx2i
ðcosðsriDxiÞ

(
� 1Þ

)
� 1

Dt
ðcosðscDtÞ � 1Þ; and BðsÞ ¼ 1

Dt
ðsinðscDtÞÞ:
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To find the jcj ! 0 limits, one literally takes limc!0� a�ðcÞ. Fig. 3 illustrates the set valued nature of the

function aðcÞ (see Fig. 4).

6. Conclusion

We have analyzed the effect of appropriate temporal discretizations and uniform spatial discretization on
traveling wave solutions of reaction–diffusion PDEs with piecewise linear reaction term. Our approach has

been that of applying the discretization scheme to the original PDE and then analyzing the traveling wave

equations that result from applying a traveling wave assumption. We have provided an analysis of the error

in the waveform and ða; cÞ curve to first approximation that could prove useful in choosing time/space step

sizes to minimize errors in the detuning parameter a and in the waveform. Generalizations to other models,

for instance phase field models, appear possible. In general, we found that the effect of spatial discretization

is most pronounced for wave speeds near zero resulting in pinning of waveforms and for temporal dis-

cretizations the effect is predominantly at large wave speeds and results in a possible constraint on the
values of the detuning parameter a for which there will be traveling waves. These two effects both occur for

complete discretizations and in this case the ða; cÞ curve becomes set valued even for c 6¼ 0, implying

nonuniqueness in the ða; cÞ relationship.
While shown here for a particular nonlinearity, these results show the care that needs to be taken when

solving bistable parabolic PDEs with relatively sharp interface motion using finite difference methods.

Often of interest in systems of such PDEs, such as in phase field modeling, is anisotropic motion of the

interface of the PDE (leading to such phenomena as dendritic growth). Finite differencing can both create

and enhance such effects.

Fig. 3. A comparison of the aðcÞ relations of the Backward Euler equation (10) [temporal], the rectangular spatial equation (7)

[spatial], the complete discretizations with Backward Euler equation (17) [complete], and the original equation (4) [exact], for piecewise

linear f ; Dt ¼ 0:1; �2 ¼ 2, n ¼ 2, Dx1 ¼ Dx2 ¼
ffiffiffi
2

p
, and r ¼ ð1; 0Þ. The values for this plot were obtained by solving each of the

equations for a minimum of 1000 different values of c. The shaded region indicates the values of a for any c 6¼ 0.
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Appendix A

Theorem A.1. For m a positive integer and n a nonnegative integer satisfying n < 2m consider the inte-
grals

Imn :¼
Z 1

0

x2n

ðx2 þ a2Þmðx2 þ b2Þm dx ðA:1Þ

for nonnegative real numbers a and b not both zero. Then for m ¼ 1; 2; . . . ;

Imm ¼ p
cm

ðaþ bÞ2m�1
and Im;m�1 ¼

p
ab

cm
ðaþ bÞ2m�1

; ðA:2Þ

Fig. 4. In this plot we illustrate why the aðcÞ plot for the complete discretization appearing in Fig. 3 has steps. We focus on the �jump�
which appears at c ¼ 5. Plots (a), (b), and (c) are wave profiles WðnÞ for the complete discretization with nonlinearity,

f ; Dt ¼ 0:1; �2 ¼ 2; n ¼ 2, and Dx1 ¼ Dx2 ¼
ffiffiffi
2

p
. Recall that the value of a ¼ Wð0Þ. Plot (a) is WðnÞ when the wave speed c ¼ 5. Plots

(b) and (c) are a magnification about n ¼ 0 and illustrate how the step in the solution profiles at n ¼ 0 �jumps� as c increases though
c ¼ 5.
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where

cmþ1 ¼ c1
ð2mÞ!

22mðm!Þ2
; m ¼ 1; 2; . . . ;

with c1 ¼ 1
2
. Furthermore, for m ¼ 2; 3; . . .

Im;mþ1 ¼
p

ðaþ bÞ2m�1
½ðcm�1 � cmÞðaþ bÞ2 þ cmab	 and Im;m�2 ¼

Im;mþ1
a3b3

: ðA:3Þ

Proof. Induct on m and n starting with

I10 ¼
p
2ab

1

aþ b
and I11 ¼

p
2

1

aþ b

using the identities

o2Imn

oaob
¼ 4abm2Imþ1;n; ðA:4Þ

Im;nþ2 ¼ Im�1;n � ða2 þ b2ÞIm;nþ1 � a2b2Imn; m ¼ 2; 3; . . . ; n ¼ 0; . . . ; 2m� 3: � ðA:5Þ

Remark A.1. Further formulas for admissible ðm; nÞ may be derived in a similar fashion.

We write the polynomial of s given by A2ðsÞ þ c2s2 � �4s4 þ ð2�2 þ c2Þs2 þ 1 for � > 0 and c 6¼ 0 as

�4ðs2 � a1Þðs2 � a2Þ where

a1 ¼
�ðc2 þ 2�2Þ þ c

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4�2

p

2�4
; a2 ¼

�ðc2 þ 2�2Þ � c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4�2

p

2�4
: ðA:6Þ

If we let a2 ¼ �a1 and b2 ¼ �a2, then

I10 ¼
Z 1

0

ds
ðs2 � a1Þðs2 � a2Þ

¼ �4p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4�2

p ; I11 ¼
�2p

2
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4�2

p ; ðA:7Þ

I20 ¼
�12p

4ðc2 þ 4�2Þ3=2
c2 þ 4�2

�4

�
þ 1

�2

�
; I21 ¼

�8p

4ðc2 þ 4�2Þ3=2
;

I22 ¼
�6p

4ðc2 þ 4�2Þ3=2
; I23 ¼

�6p

4ðc2 þ 4�2Þ3=2
c2 þ 4�2

�4

�
þ 1

�2

�
:

ðA:8Þ

These types of integrals are used to compute the ~CCj; j ¼ 1; 2; . . ., while to compute the Cj the following

integrals are required

IsmnðnÞ :¼
Z 1

0

x2nþ1 sinðxnÞ
ðx2 þ a2Þmðx2 þ b2Þm dx ðA:9Þ
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and

IcmnðnÞ :¼
Z 1

0

x2n cosðxnÞ
ðx2 þ a2Þmðx2 þ b2Þm dx: ðA:10Þ

These integrals also satisfy the identities (A.4) and (A.5) and we tabulate some that we employ below.

Ic10ðnÞ ¼
�6p

2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4�2

p ffiffiffiffiffiffiffiffi�a2
p

e�
ffiffiffiffiffiffi�a1

p jnj�
� ffiffiffiffiffiffiffiffi�a1
p

e�
ffiffiffiffiffiffi�a2

p jnj�;
Ic11ðnÞ ¼

�4p

2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4�2

p ffiffiffiffiffiffiffiffi�a2
p

e�
ffiffiffiffiffiffi�a2

p jnj�
� ffiffiffiffiffiffiffiffi�a1
p

e�
ffiffiffiffiffiffi�a1

p jnj�;
ðA:11Þ

Is10ðnÞ ¼
�4p

2c
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
c2 þ 4�2

p e�
ffiffiffiffiffiffi�a1

p jnj�
� e�

ffiffiffiffiffiffi�a2
p jnj�; ðA:12Þ

Ic20ðnÞ ¼
�8p

4c2ðc2 þ 4�2Þ e�
ffiffiffiffiffiffi�a1

p jnj 1

ð ffiffiffiffiffiffiffiffi�a1
p Þ3

 "
þ jnj
ð ffiffiffiffiffiffiffiffi�a1
p Þ2

!

þ e�
ffiffiffiffiffiffi�a2

p jnj 1

ð ffiffiffiffiffiffiffiffi�a2
p Þ3

 
þ jnj
ð ffiffiffiffiffiffiffiffi�a2
p Þ2

!#

þ �12p

c3ðc2 þ 4�2Þ3=2
e�
ffiffiffiffiffiffi�a2

p jnj 1ffiffiffiffiffiffiffiffi�a2
p

� ��
� e�

ffiffiffiffiffiffi�a1
p jnj 1ffiffiffiffiffiffiffiffi�a1

p
� ��

; ðA:13Þ

Ic21ðnÞ ¼
�8p

4c2ðc2 þ 4�2Þ e�
ffiffiffiffiffiffi�a1

p jnj 1

ð ffiffiffiffiffiffiffiffi�a1
p Þ

��
� jnj

�
þ e�

ffiffiffiffiffiffi�a2
p jnj 1

ð ffiffiffiffiffiffiffiffi�a2
p Þ

�
� jnj

��

þ �12p

c3ðc2 þ 4�2Þ3=2
e�
ffiffiffiffiffiffi�a2

p jnjð
�

� ffiffiffiffiffiffiffiffi�a2
p Þ � e�

ffiffiffiffiffiffi�a1
p jnjð � ffiffiffiffiffiffiffiffi�a1

p Þ
�
;

Ic22ðnÞ ¼
�8p

4c2ðc2 þ 4�2Þ e�
ffiffiffiffiffiffi�a1

p jnj
�h
� 3

ffiffiffiffiffiffiffiffi�a1
p þ jnjð ffiffiffiffiffiffiffiffi�a1

p Þ2
�

þ e�
ffiffiffiffiffiffi�a2

p jnjð � 3
ffiffiffiffiffiffiffiffi�a2

p þ jnjð ffiffiffiffiffiffiffiffi�a2
p Þ2Þ

i

þ �12p

c3ðc2 þ 4�2Þ3=2
e�
ffiffiffiffiffiffi�a2

p jnjð ffiffiffiffiffiffiffiffi�a2
p Þ3

h
� e�

ffiffiffiffiffiffi�a1
p jnjð ffiffiffiffiffiffiffiffi�a1

p Þ3
i
; ðA:14Þ

Ic23ðnÞ ¼
�8p

4c2ðc2 þ 4�2Þ e�
ffiffiffiffiffiffi�a1

p jnjð5ð ffiffiffiffiffiffiffiffi�a1
p Þ3

h
� jnjð ffiffiffiffiffiffiffiffi�a1

p Þ4Þ

þ e�
ffiffiffiffiffiffi�a2

p jnjð5ð ffiffiffiffiffiffiffiffi�a2
p Þ3 � jnjð ffiffiffiffiffiffiffiffi�a2

p Þ4Þ
i

þ �12p

c3ðc2 þ 4�2Þ3=2
e�
ffiffiffiffiffiffi�a2

p jnjð
h

� ffiffiffiffiffiffiffiffi�a2
p Þ5 � e�

ffiffiffiffiffiffi�a1
p jnjð � ffiffiffiffiffiffiffiffi�a1

p Þ5
i
;
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Is20ðnÞ ¼
�8p

4c2ðc2 þ 4�2Þ e�
ffiffiffiffiffiffi�a1

p jnj n
ð ffiffiffiffiffiffiffiffi�a1
p Þ

� ��
þ e�

ffiffiffiffiffiffi�a2
p jnj n

ð ffiffiffiffiffiffiffiffi�a2
p Þ

� ��

þ �12p

c3ðc2 þ 4�2Þ3=2
e�
ffiffiffiffiffiffi�a2

p jnj�
� e�

ffiffiffiffiffiffi�a1
p jnj�;

Is21ðnÞ ¼
�8p

4c2ðc2 þ 4�2Þ e�
ffiffiffiffiffiffi�a1

p jnjð2
�

� ffiffiffiffiffiffiffiffi�a1
p

nÞ þ e�
ffiffiffiffiffiffi�a2

p jnjð2� ffiffiffiffiffiffiffiffi�a2
p

nÞ
�

þ �12p

c3ðc2 þ 4�2Þ3=2
h
� e�

ffiffiffiffiffiffi�a2
p jnjð ffiffiffiffiffiffiffiffi�a2

p Þ2 þ e�
ffiffiffiffiffiffi�a1

p jnjð ffiffiffiffiffiffiffiffi�a1
p Þ2

i
;

ðA:15Þ

Is22ðnÞ ¼
�8p

4c2ðc2 þ 4�2Þ e�
ffiffiffiffiffiffi�a1

p jnjð
h

� 4ð ffiffiffiffiffiffiffiffi�a1
p Þ2 þ nð ffiffiffiffiffiffiffiffi�a1

p Þ3Þ

þ e�
ffiffiffiffiffiffi�a2

p jnjð � 4ð ffiffiffiffiffiffiffiffi�a2
p Þ2 þ nð ffiffiffiffiffiffiffiffi�a2

p Þ3Þ
i

ðA:16Þ

þ �12p

c3ðc2 þ 4�2Þ3=2
e�
ffiffiffiffiffiffi�a2

p jnjð ffiffiffiffiffiffiffiffi�a2
p Þ4

h
� e�

ffiffiffiffiffiffi�a1
p jnjð ffiffiffiffiffiffiffiffi�a1

p Þ4
i
:
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